15 using T =
typename V::ValueType;
16 using M =
typename V::MatrixType;
33 [[nodiscard]]
constexpr V
operator() (
const V & x )
const noexcept {
return A * x +
b; }
36 [[nodiscard]]
constexpr V
linearOnly(
const V & x )
const noexcept {
return A * x; }
43 {
return { u.
A * v.A, u.A * v.b + u.b }; }
48 return a.
A ==
b.A && a.
b ==
b.b;
66 res.b = -( res.A * b );
#define MR_REQUIRES_IF_SUPPORTED(...)
Definition MRMacros.h:29
MRMESH_CLASS Vector3< double > Matrix2< double > Matrix4< double > SymMatrix3< double > AffineXf
Definition MRMesh/MRMeshFwd.h:223
Definition MRMesh/MRAffineXf.h:14
typename V::ValueType T
Definition MRMesh/MRAffineXf.h:15
friend bool operator!=(const AffineXf< V > &a, const AffineXf< V > &b)
Definition MRMesh/MRAffineXf.h:52
static constexpr AffineXf linear(const M &A) noexcept
creates linear-only transformation (without translation)
Definition MRMesh/MRAffineXf.h:28
static constexpr AffineXf xfAround(const M &A, const V &stable) noexcept
creates transformation with given linear part with given stable point
Definition MRMesh/MRAffineXf.h:30
friend bool operator==(const AffineXf< V > &a, const AffineXf< V > &b)
Definition MRMesh/MRAffineXf.h:46
constexpr V operator()(const V &x) const noexcept
application of the transformation to a point
Definition MRMesh/MRAffineXf.h:33
typename V::MatrixType M
Definition MRMesh/MRAffineXf.h:16
constexpr AffineXf inverse() const noexcept
computes inverse transformation
constexpr AffineXf() noexcept=default
V b
Definition MRMesh/MRAffineXf.h:19
M A
Definition MRMesh/MRAffineXf.h:18
static constexpr AffineXf translation(const V &b) noexcept
creates translation-only transformation (with identity linear component)
Definition MRMesh/MRAffineXf.h:26
constexpr V linearOnly(const V &x) const noexcept
Definition MRMesh/MRAffineXf.h:36
constexpr AffineXf(const AffineXf< U > &xf) noexcept
Definition MRMesh/MRAffineXf.h:24