12#pragma warning(disable: 4804)
13#pragma warning(disable: 4146)
45 template <MR_SAME_TYPE_TEMPLATE_PARAM(T, TT)>
53 static constexpr Matrix4 scale( T s )
noexcept {
return Matrix4( { s, T(0), T(0), T(0) }, { T(0), s, T(0), T(0) }, { T(0), T(0), s, T(0) }, { T(0), T(0), T(0), s } ); }
67 constexpr T
trace() const noexcept {
return x.x +
y.y +
z.z +
w.w; }
69 constexpr T
normSq() const noexcept {
return x.lengthSq() +
y.lengthSq() +
z.lengthSq() +
w.lengthSq(); }
70 constexpr auto norm() const noexcept
80 T
det() const noexcept;
91 constexpr T*
data() {
return (T*) (&
x); };
92 constexpr const T*
data()
const {
return (T*) (&
x); };
94 template <MR_SAME_TYPE_TEMPLATE_PARAM(T, TT)>
97 assert( std::abs(
w.x ) < std::numeric_limits<T>::epsilon() * 1000 );
98 assert( std::abs(
w.y ) < std::numeric_limits<T>::epsilon() * 1000 );
99 assert( std::abs(
w.z ) < std::numeric_limits<T>::epsilon() * 1000 );
100 assert( std::abs( 1 -
w.w ) < std::numeric_limits<T>::epsilon() * 1000 );
102 res.
A.x.x =
x.x; res.
A.x.y =
x.y; res.
A.x.z =
x.z; res.
b.x =
x.w;
103 res.
A.y.x =
y.x; res.
A.y.y =
y.y; res.
A.y.z =
y.z; res.
b.y =
y.w;
104 res.
A.z.x =
z.x; res.
A.z.y =
z.y; res.
A.z.z =
z.z; res.
b.z =
z.w;
123 if constexpr ( std::is_integral_v<T> )
124 return { b.x / a, b.y / a, b.z / a, b.w / a };
126 return b * ( 1 / a );
134 if constexpr ( std::is_integral_v<T> )
135 { a.
x /= b; a.y /= b; a.z /= b; a.w /= b;
return a; }
137 return a *= ( 1 / b );
143 return {
dot( a.x, b ),
dot( a.y, b ),
dot( a.z, b ),
dot( a.w, b ) };
150 for (
int i = 0; i < 4; ++i )
151 for (
int j = 0; j < 4; ++j )
152 res[i][j] =
dot( a[i], b.col(j) );
164 return dot( a.x, b.x ) + dot( a.y, b.y ) + dot( a.z, b.z ) + dot( a.w, b.w );
170 return ( *
this *
Vector4<T>{ b.
x, b.y, b.z, T(1) } ).proj3d();
177 return { a.
x * b, a.
y * b, a.
z * b, a.
w * b };
184 auto* resM = (T*) &res.
x;
186 for (
int m = 0; m < 4; m++ )
190 for (
int n = 0; n < 4; n++ )
194 resM[cur++] = (*this)[m][n];
205 x.x * submatrix3( 0, 0 ).det()
206 - x.y * submatrix3( 0, 1 ).det()
207 + x.z * submatrix3( 0, 2 ).det()
208 - x.w * submatrix3( 0, 3 ).det();
216 { x.x, y.x, z.x, w.x },
217 { x.y, y.y, z.y, w.y },
218 { x.z, y.z, z.z, w.z },
219 { x.w, y.w, z.w, w.w },
230 inv[0][0] = m[5] * m[10] * m[15] -
231 m[5] * m[11] * m[14] -
232 m[9] * m[6] * m[15] +
233 m[9] * m[7] * m[14] +
234 m[13] * m[6] * m[11] -
235 m[13] * m[7] * m[10];
237 inv[1][0] = -m[4] * m[10] * m[15] +
238 m[4] * m[11] * m[14] +
239 m[8] * m[6] * m[15] -
240 m[8] * m[7] * m[14] -
241 m[12] * m[6] * m[11] +
242 m[12] * m[7] * m[10];
244 inv[2][0] = m[4] * m[9] * m[15] -
245 m[4] * m[11] * m[13] -
246 m[8] * m[5] * m[15] +
247 m[8] * m[7] * m[13] +
248 m[12] * m[5] * m[11] -
251 inv[3][0] = -m[4] * m[9] * m[14] +
252 m[4] * m[10] * m[13] +
253 m[8] * m[5] * m[14] -
254 m[8] * m[6] * m[13] -
255 m[12] * m[5] * m[10] +
258 inv[0][1] = -m[1] * m[10] * m[15] +
259 m[1] * m[11] * m[14] +
260 m[9] * m[2] * m[15] -
261 m[9] * m[3] * m[14] -
262 m[13] * m[2] * m[11] +
263 m[13] * m[3] * m[10];
265 inv[1][1] = m[0] * m[10] * m[15] -
266 m[0] * m[11] * m[14] -
267 m[8] * m[2] * m[15] +
268 m[8] * m[3] * m[14] +
269 m[12] * m[2] * m[11] -
270 m[12] * m[3] * m[10];
272 inv[2][1] = -m[0] * m[9] * m[15] +
273 m[0] * m[11] * m[13] +
274 m[8] * m[1] * m[15] -
275 m[8] * m[3] * m[13] -
276 m[12] * m[1] * m[11] +
279 inv[3][1] = m[0] * m[9] * m[14] -
280 m[0] * m[10] * m[13] -
281 m[8] * m[1] * m[14] +
282 m[8] * m[2] * m[13] +
283 m[12] * m[1] * m[10] -
286 inv[0][2] = m[1] * m[6] * m[15] -
287 m[1] * m[7] * m[14] -
288 m[5] * m[2] * m[15] +
289 m[5] * m[3] * m[14] +
290 m[13] * m[2] * m[7] -
293 inv[1][2] = -m[0] * m[6] * m[15] +
294 m[0] * m[7] * m[14] +
295 m[4] * m[2] * m[15] -
296 m[4] * m[3] * m[14] -
297 m[12] * m[2] * m[7] +
300 inv[2][2] = m[0] * m[5] * m[15] -
301 m[0] * m[7] * m[13] -
302 m[4] * m[1] * m[15] +
303 m[4] * m[3] * m[13] +
304 m[12] * m[1] * m[7] -
307 inv[3][2] = -m[0] * m[5] * m[14] +
308 m[0] * m[6] * m[13] +
309 m[4] * m[1] * m[14] -
310 m[4] * m[2] * m[13] -
311 m[12] * m[1] * m[6] +
314 inv[0][3] = -m[1] * m[6] * m[11] +
315 m[1] * m[7] * m[10] +
316 m[5] * m[2] * m[11] -
317 m[5] * m[3] * m[10] -
321 inv[1][3] = m[0] * m[6] * m[11] -
322 m[0] * m[7] * m[10] -
323 m[4] * m[2] * m[11] +
324 m[4] * m[3] * m[10] +
328 inv[2][3] = -m[0] * m[5] * m[11] +
330 m[4] * m[1] * m[11] -
335 inv[3][3] = m[0] * m[5] * m[10] -
337 m[4] * m[1] * m[10] +
342 det = m[0] * inv[0][0] + m[1] * inv[1][0] + m[2] * inv[2][0] + m[3] * inv[3][0];
370 x.x = rot.x.x; x.y = rot.x.y; x.z = rot.x.z;
371 y.x = rot.y.x; y.y = rot.y.y; y.z = rot.y.z;
372 z.x = rot.z.x; z.y = rot.z.y; z.z = rot.z.z;
384 x.w = t.x; y.w = t.y; z.w = t.z;
#define MR_REQUIRES_IF_SUPPORTED(...)
Definition MRMacros.h:31
MRMESH_CLASS Vector3< double > Matrix2< double > Matrix4
Definition MRMesh/MRMeshFwd.h:202
MRMESH_CLASS Vector3
Definition MRMesh/MRMeshFwd.h:170
AffineXf< Vector3< T > > AffineXf3
Definition MRMesh/MRMeshFwd.h:241
Definition MRMesh/MRAffineXf.h:14
V b
Definition MRMesh/MRAffineXf.h:19
M A
Definition MRMesh/MRAffineXf.h:18
Definition MRMesh/MRMatrix3.h:19
Vector3< T > x
rows, identity matrix by default
Definition MRMesh/MRMatrix3.h:24
Vector3< T > y
Definition MRMesh/MRMatrix3.h:25
Vector3< T > z
Definition MRMesh/MRMatrix3.h:26
Definition MRMatrix4.h:20
constexpr Matrix4(const AffineXf3< TT > &xf)
Definition MRMatrix4.h:46
friend constexpr bool operator!=(const Matrix4< T > &a, const Matrix4< T > &b)
Definition MRMatrix4.h:113
Vector4< T > z
Definition MRMatrix4.h:27
constexpr T * data()
Definition MRMatrix4.h:91
T ValueType
Definition MRMatrix4.h:21
constexpr T trace() const noexcept
computes trace of the matrix
Definition MRMatrix4.h:67
void setTranslation(const Vector3< T > &t) noexcept
friend constexpr auto operator*(T a, const Matrix4< T > &b) -> Matrix4< decltype(std::declval< T >() *std::declval< T >())>
Definition MRMatrix4.h:119
Matrix3< T > submatrix3(int i, int j) const noexcept
computes submatrix of the matrix with excluded i-th row and j-th column
static constexpr Matrix4 zero() noexcept
Definition MRMatrix4.h:50
constexpr T normSq() const noexcept
compute sum of squared matrix elements
Definition MRMatrix4.h:69
constexpr const T & operator()(int row, int col) const noexcept
element access
Definition MRMatrix4.h:56
Vector4< T > y
Definition MRMatrix4.h:26
static constexpr Matrix4 scale(T s) noexcept
returns a matrix that scales uniformly
Definition MRMatrix4.h:53
void setRotation(const Matrix3< T > &rot) noexcept
constexpr Matrix3< T > getRotation() const noexcept
constexpr Matrix4(const Matrix3< T > &r, const Vector3< T > &t)
construct from rotation matrix and translation vector
Definition MRMatrix4.h:35
friend constexpr auto operator/(Matrix4< T > b, T a) -> Matrix4< decltype(std::declval< T >()/std::declval< T >())>
Definition MRMatrix4.h:121
T det() const noexcept
computes determinant of the matrix
Vector4< T > w
Definition MRMatrix4.h:28
constexpr Matrix4< T > transposed() const noexcept
computes transposed matrix
constexpr auto norm() const noexcept
Definition MRMatrix4.h:70
auto dot(const Matrix4< T > &a, const Matrix4< T > &b) -> decltype(dot(a.x, b.x))
double-dot product: x = a : b
Definition MRMatrix4.h:162
friend constexpr auto operator+(const Matrix4< T > &a, const Matrix4< T > &b) -> Matrix4< decltype(std::declval< T >()+std::declval< T >())>
Definition MRMatrix4.h:117
constexpr Matrix4(const Matrix4< U > &m)
Definition MRMatrix4.h:49
constexpr const Vector4< T > & operator[](int row) const noexcept
row access
Definition MRMatrix4.h:60
friend constexpr Matrix4< T > & operator+=(Matrix4< T > &a, const Matrix4< T > &b)
Definition MRMatrix4.h:129
constexpr Vector4< T > col(int i) const noexcept
column access
Definition MRMatrix4.h:64
friend constexpr Matrix4< T > & operator*=(Matrix4< T > &a, T b)
Definition MRMatrix4.h:131
friend constexpr Matrix4< T > & operator-=(Matrix4< T > &a, const Matrix4< T > &b)
Definition MRMatrix4.h:130
friend constexpr auto operator-(const Matrix4< T > &a, const Matrix4< T > &b) -> Matrix4< decltype(std::declval< T >() - std::declval< T >())>
Definition MRMatrix4.h:118
constexpr Matrix4() noexcept=default
constexpr const T * data() const
Definition MRMatrix4.h:92
friend constexpr bool operator==(const Matrix4< T > &a, const Matrix4< T > &b)
Definition MRMatrix4.h:112
static constexpr Matrix4 identity() noexcept
Definition MRMatrix4.h:51
constexpr Matrix4< T > inverse() const noexcept
computes inverse matrix
friend constexpr Matrix4< T > & operator/=(Matrix4< T > &a, T b)
Definition MRMatrix4.h:132
constexpr Vector3< T > getTranslation() const noexcept
Vector4< T > x
rows, identity matrix by default
Definition MRMatrix4.h:25
Matrix4< T > outer(const Vector4< T > &a, const Vector4< T > &b)
x = a * b^T
Definition MRMatrix4.h:175
Definition MRMesh/MRVector3.h:26
T x
Definition MRMesh/MRVector3.h:32
T y
Definition MRMesh/MRVector3.h:32
T z
Definition MRMesh/MRVector3.h:32
Definition MRVector4.h:20
T y
Definition MRVector4.h:26
T z
Definition MRVector4.h:26
T x
Definition MRVector4.h:26
T w
Definition MRVector4.h:26