30 static constexpr Matrix3 scale( T s )
noexcept {
return Matrix3( { s, T(0), T(0) }, { T(0), s, T(0) }, { T(0), T(0), s } ); }
32 static constexpr Matrix3 scale( T sx, T sy, T sz )
noexcept {
return Matrix3( { sx, T(0), T(0) }, { T(0), sy, T(0) }, { T(0), T(0), sz } ); }
57 constexpr T
trace() const noexcept {
return x.x +
y.y +
z.z; }
59 constexpr T
normSq() const noexcept {
return x.lengthSq() +
y.lengthSq() +
z.lengthSq(); }
60 constexpr auto norm() const noexcept
68 constexpr T
det() const noexcept;
88 if constexpr ( std::is_integral_v<T> )
89 {
x /= b;
y /= b;
z /= b;
return *
this; }
91 return *
this *= ( 1 / b );
102 return { dot( a.
x, b ), dot( a.
y, b ), dot( a.
z, b ) };
109 return dot( a.
x, b.
x ) + dot( a.
y, b.
y ) + dot( a.
z, b.
z );
117 for (
int i = 0; i < 3; ++i )
118 for (
int j = 0; j < 3; ++j )
119 res[i][j] = dot( a[i], b.
col(j) );
127 return { a.
x * b, a.
y * b, a.
z * b };
132 {
return a.
x == b.
x && a.
y == b.
y && a.
z == b.
z; }
135inline bool operator !=(
const Matrix3<T> & a,
const Matrix3<T> & b )
136 {
return !( a == b ); }
139inline Matrix3<T>
operator +(
const Matrix3<T> & a,
const Matrix3<T> & b )
140 {
return { a.x + b.x, a.y + b.y, a.z + b.z }; }
143inline Matrix3<T>
operator -(
const Matrix3<T> & a,
const Matrix3<T> & b )
144 {
return { a.x - b.x, a.y - b.y, a.z - b.z }; }
147inline Matrix3<T>
operator *( T a,
const Matrix3<T> & b )
148 {
return { a * b.x, a * b.y, a * b.z }; }
151inline Matrix3<T>
operator *(
const Matrix3<T> & b, T a )
152 {
return { a * b.x, a * b.y, a * b.z }; }
155inline Matrix3<T>
operator /( Matrix3<T> b, T a )
156 { b /= a;
return b; }
162 auto u = axis.normalized();
167 { c + u.x * u.x * oc, u.x * u.y * oc - u.z * s, u.x * u.z * oc + u.y * s },
168 { u.y * u.x * oc + u.z * s, c + u.y * u.y * oc, u.y * u.z * oc - u.x * s },
169 { u.z * u.x * oc - u.y * s, u.z * u.y * oc + u.x * s, c + u.z * u.z * oc }
176 auto axis =
cross( from, to );
177 if ( axis.lengthSq() > 0 )
178 return rotation( axis,
angle( from, to ) );
179 if (
dot( from, to ) >= 0 )
181 return rotation(
cross( from, from.furthestBasisVector() ), T( PI ) );
188 const auto cx = std::cos( eulerAngles.x );
189 const auto cy = std::cos( eulerAngles.y );
190 const auto cz = std::cos( eulerAngles.z );
191 const auto sx = std::sin( eulerAngles.x );
192 const auto sy = std::sin( eulerAngles.y );
193 const auto sz = std::sin( eulerAngles.z );
195 { cy * cz, cz * sx * sy - cx * sz, cx * cz * sy + sx * sz },
196 { cy * sz, cx * cz + sx * sy * sz, -cz * sx + cx * sy * sz },
197 { -sy, cy * sx, cx * cy }
204 const auto alpha = eulerAngles.
x;
205 const auto beta = eulerAngles.y;
206 const auto gamma = eulerAngles.z;
208 { T(1), -gamma, beta },
209 { gamma, T(1), -alpha },
210 { -beta, alpha, T(1) }
218 x.x * ( y.y * z.z - y.z * z.y )
219 - x.y * ( y.x * z.z - y.z * z.x )
220 + x.z * ( y.x * z.y - y.y * z.x );
226 auto det = this->det();
231 { y.y * z.z - y.z * z.y, x.z * z.y - x.y * z.z, x.y * y.z - x.z * y.y },
232 { y.z * z.x - y.x * z.z, x.x * z.z - x.z * z.x, x.z * y.x - x.x * y.z },
233 { y.x * z.y - y.y * z.x, x.y * z.x - x.x * z.y, x.x * y.y - x.y * y.x }
253 std::atan2( z.y, z.z ),
254 std::atan2( -z.x, std::sqrt( z.y * z.y + z.z * z.z ) ),
255 std::atan2( y.x, x.x )
263 const auto a0 = col( 0 );
266 const auto r00 = a0.length();
267 const auto e0 = r00 > 0 ? a0 / r00 :
Vector3<T>{};
268 const auto r01 =
dot( e0, a1 );
269 const auto r02 =
dot( e0, a2 );
271 const auto r11 = a1.length();
272 const auto e1 = r11 > 0 ? a1 / r11 :
Vector3<T>{};
273 const auto r12 =
dot( e1, a2 );
274 a2 -= r02 * e0 + r12 * e1;
275 const auto r22 = a2.length();
276 const auto e2 = r22 > 0 ? a2 / r22 :
Vector3<T>{};
#define MR_REQUIRES_IF_SUPPORTED(...)
Definition MRMacros.h:29
BitSet operator-(const BitSet &a, const BitSet &b)
Definition MRMesh/MRBitSet.h:348
MRMESH_API bool operator==(const BitSet &a, const BitSet &b)
compare that two bit sets have the same set bits (they can be equal even if sizes are distinct but la...
bool operator!=(const SetBitIteratorT< T > &a, const SetBitIteratorT< T > &b)
Definition MRMesh/MRBitSet.h:282
Color operator/(const Color &b, float a)
Definition MRMesh/MRColor.h:128
Color operator*(float a, const Color &b)
Definition MRMesh/MRColor.h:118
MRMESH_CLASS Vector3
Definition MRMesh/MRMeshFwd.h:159
Color operator+(const Color &a, const Color &b)
Definition MRMesh/MRColor.h:108
Vector3f cross(Vector3f a, Vector3f b)
float dot(Vector3f a, Vector3f b)
Definition MRMesh/MRMatrix3.h:77
Matrix3 q
Definition MRMesh/MRMatrix3.h:78
Definition MRMesh/MRMatrix3.h:13
static constexpr Matrix3 scale(T sx, T sy, T sz) noexcept
returns a matrix that has its own scale along each axis
Definition MRMesh/MRMatrix3.h:32
Matrix3< T > outer(const Vector3< T > &a, const Vector3< T > &b)
x = a * b^T
Definition MRMesh/MRMatrix3.h:125
T ValueType
Definition MRMesh/MRMatrix3.h:14
static constexpr Matrix3 fromRows(const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z) noexcept
constructs a matrix from its 3 rows
Definition MRMesh/MRMatrix3.h:44
static constexpr Matrix3 identity() noexcept
Definition MRMesh/MRMatrix3.h:28
constexpr Matrix3< T > transposed() const noexcept
computes transposed matrix
constexpr T det() const noexcept
computes determinant of the matrix
static constexpr Matrix3 rotationFromEuler(const Vector3< T > &eulerAngles) noexcept
Vector3< T > x
rows, identity matrix by default
Definition MRMesh/MRMatrix3.h:18
constexpr const Vector3< T > & operator[](int row) const noexcept
row access
Definition MRMesh/MRMatrix3.h:50
constexpr Matrix3< T > inverse() const noexcept
computes inverse matrix
constexpr T normSq() const noexcept
compute sum of squared matrix elements
Definition MRMesh/MRMatrix3.h:59
static constexpr Matrix3 rotation(const Vector3< T > &axis, T angle) noexcept
creates matrix representing rotation around given axis on given angle
constexpr auto norm() const noexcept
Definition MRMesh/MRMatrix3.h:60
constexpr Vector3< T > toEulerAngles() const noexcept
returns 3 Euler angles, assuming this is a rotation matrix composed as follows: R=R(z)*R(y)*R(x)
constexpr Vector3< T > col(int i) const noexcept
column access
Definition MRMesh/MRMatrix3.h:54
static constexpr Matrix3 rotation(const Vector3< T > &from, const Vector3< T > &to) noexcept
creates matrix representing rotation that after application to (from) makes (to) vector
static constexpr Matrix3 scale(T s) noexcept
returns a matrix that scales uniformly
Definition MRMesh/MRMatrix3.h:30
Matrix3 & operator/=(T b)
Definition MRMesh/MRMatrix3.h:86
constexpr T trace() const noexcept
computes trace of the matrix
Definition MRMesh/MRMatrix3.h:57
static constexpr Matrix3 fromColumns(const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z) noexcept
Definition MRMesh/MRMatrix3.h:47
Matrix3 & operator*=(T b)
Definition MRMesh/MRMatrix3.h:85
Vector3< T > y
Definition MRMesh/MRMatrix3.h:19
static constexpr Matrix3 zero() noexcept
Definition MRMesh/MRMatrix3.h:27
T dot(const Matrix3< T > &a, const Matrix3< T > &b)
double-dot product: x = a : b
Definition MRMesh/MRMatrix3.h:107
Matrix3 & operator-=(const Matrix3< T > &b)
Definition MRMesh/MRMatrix3.h:84
QR qr() const noexcept
decompose this matrix on the product Q*R, where Q is orthogonal and R is upper triangular
constexpr Matrix3(const Matrix3< U > &m)
Definition MRMesh/MRMatrix3.h:26
Vector3< T > z
Definition MRMesh/MRMatrix3.h:20
static constexpr Matrix3 approximateLinearRotationMatrixFromEuler(const Vector3< T > &eulerAngles) noexcept
returns linear by angles approximation of the rotation matrix, which is close to true rotation matrix...
constexpr Matrix3() noexcept=default
static constexpr Matrix3 scale(const Vector3< T > &s) noexcept
Definition MRMesh/MRMatrix3.h:33
Definition MRMesh/MRVector3.h:19
T x
Definition MRMesh/MRVector3.h:25
T y
Definition MRMesh/MRVector3.h:25
T z
Definition MRMesh/MRVector3.h:25