Static Public Member Functions | |
None | __init__ (*args, **kwargs) |
Matrix3f | approximateLinearRotationMatrixFromEuler (Vector3f eulerAngles) |
Matrix3f | fromColumns (Vector3f x, Vector3f y, Vector3f z) |
Matrix3f | fromRows (Vector3f x, Vector3f y, Vector3f z) |
Matrix3f | identity () |
Matrix3f | operator (*args, **kwargs) |
Matrix3f | operator (*args, **kwargs) |
Matrix3f | rotation (Vector3f axis, float angle) |
Matrix3f | rotation (Vector3f from_, Vector3f to) |
Matrix3f | rotationFromEuler (Vector3f eulerAngles) |
Matrix3f | scale (float s) |
Matrix3f | scale (float sx, float sy, float sz) |
Matrix3f | scale (Vector3f s) |
Matrix3f | zero () |
Static Protected Attributes | |
typing | _offsetof_x = 0 |
typing | _offsetof_y = 12 |
typing | _offsetof_z = 24 |
Generated from: MR::Matrix3f Aliases: Vector3_float_MatrixType, AffineXf_Vector3f_M arbitrary 3x3 matrix \\ingroup MatrixGroup
|
static |
None mrmeshpy.Matrix3f.__init__ | ( | self, | |
Quaternionf | arg0 ) |
converts this into 3x3 rotation matrix
None mrmeshpy.Matrix3f.__init__ | ( | self | ) |
initializes matrix from its 3 rows
None mrmeshpy.Matrix3f.__init__ | ( | self, | |
Matrix3f | m ) |
None mrmeshpy.Matrix3f.__init__ | ( | self, | |
Matrix3d | m ) |
NOTE: We use `std::declval()` in the operators below because libclang 18 in our binding generator is bugged and chokes on decltyping `a.x` and such. TODO fix this when we update libclang.
bool mrmeshpy.Matrix3f.__eq__ | ( | self, | |
Matrix3f | b ) |
Vector3f mrmeshpy.Matrix3f.__getitem__ | ( | self, | |
int | row ) |
row access
Vector3f mrmeshpy.Matrix3f.__getitem__ | ( | self, | |
int | row ) |
Matrix3f mrmeshpy.Matrix3f.__imatmul__ | ( | self, | |
float | b ) |
Matrix3f mrmeshpy.Matrix3f.__itruediv__ | ( | self, | |
float | b ) |
Matrix3f mrmeshpy.Matrix3f.__mul__ | ( | self, | |
float | a ) |
bool mrmeshpy.Matrix3f.__ne__ | ( | self, | |
Matrix3f | b ) |
str mrmeshpy.Matrix3f.__repr__ | ( | self | ) |
Matrix3f mrmeshpy.Matrix3f.__rmul__ | ( | self, | |
float | b ) |
None mrmeshpy.Matrix3f.__setitem__ | ( | self, | |
int | arg0, | ||
Vector3f | arg1 ) |
Matrix3f mrmeshpy.Matrix3f.__truediv__ | ( | self, | |
float | a ) |
returns linear by angles approximation of the rotation matrix, which is close to true rotation matrix for small angles
Vector3f mrmeshpy.Matrix3f.col | ( | self, | |
int | i ) |
column access
float mrmeshpy.Matrix3f.det | ( | self | ) |
computes determinant of the matrix
constructs a matrix from its 3 columns; use this method to get the matrix that transforms basis vectors ( plusX, plusY, plusZ ) into vectors ( x, y, z ) respectively
constructs a matrix from its 3 rows
|
static |
Matrix3f mrmeshpy.Matrix3f.inverse | ( | self | ) |
computes inverse matrix
float mrmeshpy.Matrix3f.norm | ( | self | ) |
float mrmeshpy.Matrix3f.normSq | ( | self | ) |
compute sum of squared matrix elements
|
static |
|
static |
Matrix3_float_QR mrmeshpy.Matrix3f.qr | ( | self | ) |
decompose this matrix on the product Q*R, where Q is orthogonal and R is upper triangular
creates matrix representing rotation around given axis on given angle
creates matrix representing rotation that after application to (from) makes (to) vector
creates matrix representing rotation from 3 Euler angles: R=R(z)*R(y)*R(x) see more https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations
|
static |
returns a matrix that scales uniformly
|
static |
returns a matrix that has its own scale along each axis
Vector3f mrmeshpy.Matrix3f.toEulerAngles | ( | self | ) |
returns 3 Euler angles, assuming this is a rotation matrix composed as follows: R=R(z)*R(y)*R(x)
float mrmeshpy.Matrix3f.trace | ( | self | ) |
computes trace of the matrix
Matrix3f mrmeshpy.Matrix3f.transposed | ( | self | ) |
computes transposed matrix
Vector3f mrmeshpy.Matrix3f.x | ( | self | ) |
rows, identity matrix by default
None mrmeshpy.Matrix3f.x | ( | self, | |
Vector3f | arg1 ) |
|
static |
|
staticprotected |
|
staticprotected |
|
staticprotected |