MeshLib Python Docs
Loading...
Searching...
No Matches
mrmeshpy.UnionFind_VertId Class Reference

Public Member Functions

None __init__ (self)
 
None __init__ (self, int size)
 
VertId find (self, VertId a)
 
VertId findUpdateRange (self, VertId a, VertId begin, VertId end)
 
bool isRoot (self, VertId a)
 
VertId parent (self, VertId a)
 
VertMap parents (self)
 
None reset (self, int size)
 
VertMap roots (self)
 
int size (self)
 
int sizeOfComp (self, VertId a)
 
tuple[VertId, bool] unite (self, VertId first, VertId second)
 
bool united (self, VertId first, VertId second)
 

Static Public Member Functions

None __init__ (*args, **kwargs)
 
UnionFind_VertId operator (*args, **kwargs)
 
UnionFind_VertId operator (*args, **kwargs)
 

Detailed Description

Generated from:  MR::UnionFind<MR::VertId>


\\brief Union-find data structure for representing disjoin sets of elements with few very quick operations:
1) union of two sets in one,
2) checking whether two elements pertain to the same set,
3) finding representative element (root) of each set by any set's element
\\tparam I is the identifier of a set's element, e.g. FaceId
\\ingroup BasicGroup

Constructor & Destructor Documentation

◆ __init__() [1/3]

None mrmeshpy.UnionFind_VertId.__init__ ( * args,
** kwargs )
static

◆ __init__() [2/3]

None mrmeshpy.UnionFind_VertId.__init__ ( self)

◆ __init__() [3/3]

None mrmeshpy.UnionFind_VertId.__init__ ( self,
int size )
creates union-find with given number of elements, each element is the only one in its disjoint set

Member Function Documentation

◆ find()

VertId mrmeshpy.UnionFind_VertId.find ( self,
VertId a )
finds the root of the set containing given element with optimizing data structure updates

◆ findUpdateRange()

VertId mrmeshpy.UnionFind_VertId.findUpdateRange ( self,
VertId a,
VertId begin,
VertId end )
finds the root of the set containing given element with optimizing data structure in the range [begin, end)

◆ isRoot()

bool mrmeshpy.UnionFind_VertId.isRoot ( self,
VertId a )
returns true if given element is the root of some set

◆ operator() [1/2]

UnionFind_VertId mrmeshpy.UnionFind_VertId.operator ( * args,
** kwargs )
static

◆ operator() [2/2]

UnionFind_VertId mrmeshpy.UnionFind_VertId.operator ( * args,
** kwargs )
static

◆ parent()

VertId mrmeshpy.UnionFind_VertId.parent ( self,
VertId a )
return parent element of this element, which is equal to given element only for set's root

◆ parents()

VertMap mrmeshpy.UnionFind_VertId.parents ( self)
gets the parents of all elements as is

◆ reset()

None mrmeshpy.UnionFind_VertId.reset ( self,
int size )
resets union-find to represent given number of elements, each element is the only one in its disjoint set

◆ roots()

VertMap mrmeshpy.UnionFind_VertId.roots ( self)
sets the root of corresponding set as the parent of each element, then returns the vector

◆ size()

int mrmeshpy.UnionFind_VertId.size ( self)
returns the number of elements in union-find

◆ sizeOfComp()

int mrmeshpy.UnionFind_VertId.sizeOfComp ( self,
VertId a )
returns the number of elements in the set containing given element

◆ unite()

tuple[VertId, bool] mrmeshpy.UnionFind_VertId.unite ( self,
VertId first,
VertId second )
unite two elements,
\\return first: new common root, second: true = union was done, false = first and second were already united

◆ united()

bool mrmeshpy.UnionFind_VertId.united ( self,
VertId first,
VertId second )
returns true if given two elements are from one set

The documentation for this class was generated from the following file: