MeshLib Documentation
Loading...
Searching...
No Matches
MR::Matrix3< T > Struct Template Reference

#include <MRMatrix3.h>

Classes

struct  QR
 returns 3 Euler angles, assuming this is a rotation matrix composed as follows: R=R(z)*R(y)*R(x) More...
 

Public Types

using ValueType = T
 
using VectorType = Vector3<T>
 

Public Member Functions

constexpr Matrix3 () noexcept=default
 
constexpr Matrix3 (const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z)
 initializes matrix from its 3 rows
 
template<typename U >
constexpr Matrix3 (const Matrix3< U > &m)
 
constexpr const Vector3< T > & operator[] (int row) const noexcept
 row access
 
constexpr Vector3< T > & operator[] (int row) noexcept
 
constexpr Vector3< T > col (int i) const noexcept
 column access
 
constexpr T trace () const noexcept
 computes trace of the matrix
 
constexpr T normSq () const noexcept
 compute sum of squared matrix elements
 
constexpr auto norm () const noexcept
 
constexpr T det () const noexcept
 computes determinant of the matrix
 
constexpr Matrix3< T > inverse() const noexcept MR_REQUIRES_IF_SUPPORTED(!std constexpr Matrix3< T > transposed () const noexcept
 computes inverse matrix
 
QR qr() const noexcept MR_REQUIRES_IF_SUPPORTED(!std Matrix3operator+= (const Matrix3< T > &b)
 decompose this matrix on the product Q*R, where Q is orthogonal and R is upper triangular
 
Matrix3operator-= (const Matrix3< T > &b)
 
Matrix3operator*= (T b)
 
Matrix3operator/= (T b)
 

Static Public Member Functions

static constexpr Matrix3 zero () noexcept
 
static constexpr Matrix3 identity () noexcept
 
static constexpr Matrix3 scale (T s) noexcept
 returns a matrix that scales uniformly
 
static constexpr Matrix3 scale (T sx, T sy, T sz) noexcept
 returns a matrix that has its own scale along each axis
 
static constexpr Matrix3 scale (const Vector3< T > &s) noexcept
 
static constexpr Matrix3 fromColumns (const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z) noexcept
 

Public Attributes

Vector3< T > x { 1, 0, 0 }
 rows, identity matrix by default
 
Vector3< T > y { 0, 1, 0 }
 
Vector3< T > z { 0, 0, 1 }
 

Static Public Attributes

static constexpr Matrix3 static rotation(const Vector3< T > &axis, T angle) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static rotation(const Vector3< T > &from, const Vector3< T > &to) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static rotationFromEuler(const Vector3< T > &eulerAngles) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static approximateLinearRotationMatrixFromEuler(const Vector3< T > &eulerAngles) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix fromRows )(const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z) noexcept
 creates matrix representing rotation around given axis on given angle
 

Related Symbols

(Note that these are not member symbols.)

template<typename T >
Vector3< T > operator* (const Matrix3< T > &a, const Vector3< T > &b)
 x = a * b
 
template<typename T >
dot (const Matrix3< T > &a, const Matrix3< T > &b)
 double-dot product: x = a : b
 
template<typename T >
Matrix3< T > operator* (const Matrix3< T > &a, const Matrix3< T > &b)
 product of two matrices
 
template<typename T >
Matrix3< T > outer (const Vector3< T > &a, const Vector3< T > &b)
 x = a * b^T
 

Detailed Description

template<typename T>
struct MR::Matrix3< T >

arbitrary 3x3 matrix

Member Typedef Documentation

◆ ValueType

template<typename T >
using MR::Matrix3< T >::ValueType = T

◆ VectorType

template<typename T >
using MR::Matrix3< T >::VectorType = Vector3<T>

Constructor & Destructor Documentation

◆ Matrix3() [1/3]

template<typename T >
MR::Matrix3< T >::Matrix3 ( )
constexprdefaultnoexcept

◆ Matrix3() [2/3]

template<typename T >
MR::Matrix3< T >::Matrix3 ( const Vector3< T > & x,
const Vector3< T > & y,
const Vector3< T > & z )
inlineconstexpr

initializes matrix from its 3 rows

◆ Matrix3() [3/3]

template<typename T >
template<typename U >
MR::Matrix3< T >::Matrix3 ( const Matrix3< U > & m)
inlineexplicitconstexpr

Member Function Documentation

◆ col()

template<typename T >
Vector3< T > MR::Matrix3< T >::col ( int i) const
inlineconstexprnoexcept

column access

◆ det()

template<typename T >
T MR::Matrix3< T >::det ( ) const
constexprnoexcept

computes determinant of the matrix

◆ fromColumns()

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::fromColumns ( const Vector3< T > & x,
const Vector3< T > & y,
const Vector3< T > & z )
inlinestaticconstexprnoexcept

constructs a matrix from its 3 columns; use this method to get the matrix that transforms basis vectors ( plusX, plusY, plusZ ) into vectors ( x, y, z ) respectively

◆ identity()

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::identity ( )
inlinestaticconstexprnoexcept

◆ norm()

template<typename T >
auto MR::Matrix3< T >::norm ( ) const
inlineconstexprnoexcept

◆ normSq()

template<typename T >
T MR::Matrix3< T >::normSq ( ) const
inlineconstexprnoexcept

compute sum of squared matrix elements

◆ operator*=()

template<typename T >
Matrix3 & MR::Matrix3< T >::operator*= ( T b)
inline

◆ operator+=()

template<typename T >
QR qr() const noexcept MR_REQUIRES_IF_SUPPORTED(!std Matrix3 & MR::Matrix3< T >::operator+= ( const Matrix3< T > & b)
inlinenoexcept

decompose this matrix on the product Q*R, where Q is orthogonal and R is upper triangular

◆ operator-=()

template<typename T >
Matrix3 & MR::Matrix3< T >::operator-= ( const Matrix3< T > & b)
inline

◆ operator/=()

template<typename T >
Matrix3 & MR::Matrix3< T >::operator/= ( T b)
inline

◆ operator[]() [1/2]

template<typename T >
const Vector3< T > & MR::Matrix3< T >::operator[] ( int row) const
inlineconstexprnoexcept

row access

◆ operator[]() [2/2]

template<typename T >
Vector3< T > & MR::Matrix3< T >::operator[] ( int row)
inlineconstexprnoexcept

◆ scale() [1/3]

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::scale ( const Vector3< T > & s)
inlinestaticconstexprnoexcept

◆ scale() [2/3]

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::scale ( T s)
inlinestaticconstexprnoexcept

returns a matrix that scales uniformly

◆ scale() [3/3]

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::scale ( T sx,
T sy,
T sz )
inlinestaticconstexprnoexcept

returns a matrix that has its own scale along each axis

◆ trace()

template<typename T >
T MR::Matrix3< T >::trace ( ) const
inlineconstexprnoexcept

computes trace of the matrix

◆ transposed()

template<typename T >
Matrix3< T > inverse() const noexcept MR_REQUIRES_IF_SUPPORTED(!std constexpr Matrix3< T > MR::Matrix3< T >::transposed ( ) const
constexprnoexcept

computes inverse matrix

computes transposed matrix

◆ zero()

template<typename T >
static constexpr Matrix3 MR::Matrix3< T >::zero ( )
inlinestaticconstexprnoexcept

Friends And Related Symbol Documentation

◆ dot()

template<typename T >
T dot ( const Matrix3< T > & a,
const Matrix3< T > & b )
related

double-dot product: x = a : b

◆ operator*() [1/2]

template<typename T >
Matrix3< T > operator* ( const Matrix3< T > & a,
const Matrix3< T > & b )
related

product of two matrices

◆ operator*() [2/2]

template<typename T >
Vector3< T > operator* ( const Matrix3< T > & a,
const Vector3< T > & b )
related

x = a * b

◆ outer()

template<typename T >
Matrix3< T > outer ( const Vector3< T > & a,
const Vector3< T > & b )
related

x = a * b^T

Member Data Documentation

◆ fromRows

template<typename T >
Matrix3 static rotation(const Vector3< T > &axis, T angle) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static rotation(const Vector3< T > &from, const Vector3< T > &to) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static rotationFromEuler(const Vector3< T > &eulerAngles) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix3 static approximateLinearRotationMatrixFromEuler(const Vector3< T > &eulerAngles) noexcept MR_REQUIRES_IF_SUPPORTED(std constexpr Matrix MR::Matrix3< T >::fromRows) (const Vector3< T > &x, const Vector3< T > &y, const Vector3< T > &z) noexcept
inlinestaticconstexprnoexcept

creates matrix representing rotation around given axis on given angle

creates matrix representing rotation that after application to (from) makes (to) vector creates matrix representing rotation from 3 Euler angles: R=R(z)*R(y)*R(x) see more https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations returns linear by angles approximation of the rotation matrix, which is close to true rotation matrix for small angles constructs a matrix from its 3 rows

◆ x

template<typename T >
Vector3<T> MR::Matrix3< T >::x { 1, 0, 0 }

rows, identity matrix by default

◆ y

template<typename T >
Vector3<T> MR::Matrix3< T >::y { 0, 1, 0 }

◆ z

template<typename T >
Vector3<T> MR::Matrix3< T >::z { 0, 0, 1 }

The documentation for this struct was generated from the following file: